Seasonality of Amazon Forests Not A Sun-Sensor Illusion

Bi, Choi, Park, Knyazikhin & Myneni Speaker: Ranga B. Myneni Boston University rmyneni@bu.edu

MODIS Science Team Meeting April 29 to May 1, 2014 Columbia, MD

Motivation

Morton et al. (2014):

- "Here we show that the apparent green up of Amazon forests in optical remote sensing data resulted from seasonal changes in near-infrared reflectance, an artefact of variations in sun-sensor geometry"
- "Previous green-up studies with MODIS EVI or LAI data did not explicitly account for changing viewing and illumination conditions"
- "Amazon forests maintain consistent canopy structure and greenness during the dry season"

Study Area

- Wet equatorial rainforests in a 1200 × 1200 km² area in the Amazon (MODIS Tile h11v09)
- Average annual rainfall over 2000 mm (TRMM data 1998 to 2012, excluding 2005 and 2010)
- Number of dry months (rainfall less than 100 mm) four or less
- One of two tiles studied by Morton et al.

MODIS LAI Analysis

Terra MODIS Product from 7 Seasonal Cycles (June 2000 to March 2008, excluding June 2005 to May 2006)

Seasonal Course of MODIS LAI Unrelated to Sun-Sensor Geometry

- off-principal plane in June
- near-principal plane in October
- off-principal plane in December
- near-principal plane in March

Seasonal Course of MODIS LAI Unrelated to Sun-Sensor Geometry

- LAI seasonality **unrelated** to seasonal course of solar zenith angle
- LAI seasonality not influenced by view zenith angle variations as they do not vary systematically through the seasonal cycle

LAI Seasonal Amplitude

Significant LAI Seasonal Amplitude in nearly all pixels that consistently show dry season EVI greening

- LAI Amplitude = (Sep to Nov Max LAI) (May to Jun Min LAI)
- White Pixels: LAI Amplitude less than |0.66|
- White and Colored Pixels: Show EVI greening in at least 4 out of 7 seasonal cycles
- EVI Greening: Oct EVI greater than Jun EVI

Conclusions: LAI Analysis

- MODIS LAI data are derived by explicitly accounting for changing viewing and illumination conditions
- Therefore, LAI data are free of sun-sensor geometry effects
- LAI seasonal cycle shows distinct net leaf flushing during the dry season and net leaf abscission during the wet season
- Wet equatorial Amazon forests do not maintain consistent canopy structure and greenness

MODIS EVI Analysis

Terra MODIS Product from 7 Seasonal Cycles (June 2000 to March 2008, excluding June 2005 to May 2006)

Aqua MODIS Product from 4 Seasonal Cycles (June 2003 to March 2008, excluding June 2005 to May 2006)

Net Leaf Abscission From Dry to Wet Season (MODIS)

- October EVI greater than March EVI at the same phase angle
- True at all phase angles
- October to March EVI decrease indicates net leaf abscission
- Thus, there must be net leaf flushing during a 12-month cycle, else the result is a leaf-less forest

Net Leaf Abscission From Dry to Wet Season (MODIS vs. MISR)

- MODIS and MISR data congruent
- October EVI greater than March EVI
- October to March EVI decrease indicates net leaf abscission

Net Leaf Flushing During the Dry Season

- October EVI greater than June EVI at phase angles for which comparable observations exist
- June to October EVI increase indicates net leaf flushing
- Thus, there must be net leaf abscission during a 12-month cycle, else the result is infinite LAI

Conclusions: EVI Analysis

- Dry season greening and wet season browning are not artefacts of changing sunsensor geometry
- Amazon forests do not maintain consistent canopy structure and greenness

Multi-Sensor & Multi-Product Analysis

Dry Season Greening

- Evidence for dry season greening:
 - Terra & Aqua MODIS EVI (MAIAC) Courtesy of A. Lyapustin
 - Terra MISR Near-infrared reflectance
 - Terra MODIS LAI (divided by 10)

These data are free of sun-sensor geometry effects

- Note that MODIS and MISR sensors have opposite sampling in these months
- If MODIS sampling results in artificial greening, MISR sampling should result in artificial browning
- But, in both cases we see greening

Seasonality in Wet Equatorial Amazon Forests

Figure courtesy of Xu and Saatchi

- Seasonality evidenced from multiple data types, sensors and platforms:
 - Terra MODIS Land Surface Temperature (LST)
 - Terra MODIS NBAR Near-Infrared Reflectance
 - QSCAT Backscatter
 - GOSAT Sun-Induced Chlorophyll Fluorescence
 - Gross Primary Production upscaled from global network of flux towers
- Results from this comprehensive analysis concordant with those presented here

Conclusions: Multi-Sensor & Multi-Product Analysis

 Various products/data from different instruments consistently show seasonality in wet equatorial Amazon forests*

*Vegetation Optical Depth (VOD) from AMSR (Courtesy of Jones, Kimball & Nemani)

• GLAS Lidar Analysis

GLAS Metrics vs. MODIS LAI: Amazon Forests

No relationship between GLAS Metrics and MODIS LAI

GLAS Metrics vs. MODIS LAI: Deciduous Forests

- GLAS Centroid saturates beyond LAI of 3
- GLAS Apparent NIR Reflectance insensitive to LAI

Relationship Between GLAS Metrics: Amazon Forests

- Increase in Centroid does not correspond to increased reflectance
- Increase in reflectance does not correspond to increased Centroid

Conclusions: GLAS Lidar Analysis

- GLAS metrics not suitable for determining LAI changes of Amazon forests due to saturation
- These forests maintain LAI greater than 5 during the entire seasonal cycle and exhibit a seasonal LAI variation of about 1
- The old adage "absence of evidence is not evidence of absence" applies here

Overall Conclusions

- Wet equatorial Amazon forests do not maintain consistent structure and greenness
- They exhibit a distinct light driven seasonal cycle

